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Abstract
The dielectric response formalism is used to evaluate the dynamically screened
interaction potential among the ions in a fast C20 cluster passing through a
solid target. This potential is further used to calculate the individual ion charge
states in the cluster by means of a statistical–variational theory which takes into
account the effects of the vicinity of the neighbouring ions. Coulomb explosion
and the energy losses of the cluster are simulated by solving equations of motion
for individual ions while taking into account, in a self-consistent manner, the
variation of ion charges in the course of explosion. Moreover, a Monte Carlo
method is used to simulate the effects of multiple scattering of cluster constituent
ions on target atoms. It is found that, owing to the wake-like asymmetry of the
inter-ionic potential, both the distribution of ion charges in the cluster and the
Coulomb explosion patterns exhibit strong spatial asymmetries in the direction
of motion. It is also shown that the cluster energy losses exhibit characteristic
interferences due to the vicinity effects, which diminish after long dwell times.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The interactions of energetic ion clusters with matter constitute a subject area of increasing
interest due to its fundamental implications in physics and its potential in novel applications.
Owing to their ability to deposit large amounts of energy in very small volumes of targets, fast
cluster beams demonstrate a strong promise for use, for example, in materials modification
and inertial confinement fusion. In particular, recent advances in accelerator techniques for
the production of fast heavy clusters [1, 2] have provided a wealth of information on the
morphology of track formation in solids. For example, it has been observed in a transmission
electron microscope that MeV C60 clusters create long, amorphous and continuous tracks in
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metals, insulators and semiconductors [3–6], which occupy cylindrical regions around the
cluster paths, such that the latent radii of the tracks increase when the cluster energy increases.

Driven by the experimental advances, the need to understand the complexity of interactions
of large clusters with solids has motivated a number of theoretical studies in recent years. The
generally adopted scenario of cluster penetration through a solid target involves the initial
stripping of the binding electrons of a cluster, after traversing just a few atomic layers,
which triggers a Coulomb explosion of the cluster due to the dynamically screened inter-
ionic interactions. Further penetration of the cluster is accompanied by intense electronic
excitations of the target which exhibit strong interferences due to the spatial correlation among
the ions, also known as the vicinage effect. In addition, for clusters made of heavier atoms
such as carbon clusters, the effective charge states of the constituent ions also depend on the
evolving cluster structure due to the vicinage effect, thus further complicating the dynamics
of Coulomb explosion and the mechanisms of energy deposition in the target. On the other
hand, for slower clusters made of lighter atoms, multiple scattering (MS) on target atoms may
provide a supplemental mechanism of cluster break-up in solid targets, which sometimes can
completely surmount Coulomb explosion. Such a complex scenario clearly indicates the need
for a theoretical model which would treat the role of the vicinage effect in Coulomb explosion,
energy losses and ion charge states in a self-consistent manner.

Over the past several years, significant progress has been achieved in theoretical work
towards the development of such a model. Nardi and Zinamon [7] were the first to study
Coulomb explosion of fast C60 clusters in solids by means of the molecular dynamics (MD)
simulation, using a radially symmetric Yukawa-like interaction potential between the ions,
which gave rise to expanding spherical-shell patterns. Very recently, those authors have
extended their early work by considering the multiple scattering on target atoms and the
charge-state evolution of the cluster constituent ions [8]. On the other hand, calculations of
the dynamically screened self-energy of fast C60 clusters in solids showed that, owing to the
wake pattern in the target dielectric response, the cluster structure could be stabilized against
Coulomb explosion when the cluster size exceeds the characteristic length λp = v/ωp, where
v is the cluster speed and ωp is the plasma frequency of the electron gas in the target [9, 10].
In a recent work, motivated by this conclusion, MD simulations were used to reveal strong
asymmetries in Coulomb explosion patterns of fast C60 clusters after long penetration times,
which were attributed to the wake effects [11, 12], showing that the use of Yukawa-type
interaction potentials may have limited applicability in studies of Coulomb explosions in
solids.

Regarding the theoretical description of the vicinage effect on the charge state of
partially stripped ions in fast clusters moving through solids, a model has been recently
developed [13, 14] which combines the self-energy calculations [9] for atomic clusters in solids
with the Brandt–Kitagawa (BK) theory [15] for the electronic structure of isolated heavy ions
moving in solids. This model provides a self-consistent scheme to describe the influence of the
surrounding ions on the effective charge state on each ion in the cluster. Such a model was used
to describe the experimental data of Brunelle et al [16] on the dependence of the average ion
charge on the number of constituent particles in carbon clusters passing through thin carbon
foils. While the inter-ionic interactions were described by the Yukawa-type potential in those
initial implementations of the model for the vicinage effect on ion charge states [13, 14],
the recent application of this model to Coulomb explosions of swift diatomic molecular ions
in solids has focused on the wake-potential asymmetry in the inter-ionic interactions and its
effects on ion charge states [17].

The purpose of the present paper is to extend our previous work for diatomic molecular
ions [17] to the case of larger clusters made of heavy atoms in order to elucidate the role of
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the wake-potential effects in the cluster energy losses, the ion charge states and the Coulomb
explosion patterns in a self-consistent manner, while taking into account the effects of multiple
scattering. In section 2, we present the theoretical models used to determine the cluster self-
energy, the ion charge states, the Coulomb explosions, the multiple scattering and the energy
losses based on the dielectric response theory using the local-approximation dielectric function.
The numerical results for fast C20 clusters in an Al target are presented in section 3, while a
short summary is given in section 4. Atomic units (au) are used throughout, unless otherwise
indicated.

2. Theoretical model

2.1. Self-energy and potential

Consider a homonuclear cluster with the atomic number Z entering a solid target with the
velocity v oriented in the direction of the z axis. After passing through a few atomic layers,
the cluster breaks up into n ions, which are placed at positions r j , with 1 � j � n, in the
laboratory frame. We consider relatively thin targets, such that the total energy losses of the
cluster are negligible in comparison to its initial kinetic energy, allowing us to assume that the
centre of mass (CM) of the cluster continues to move at the constant velocity v. Moreover,
since the cluster structure evolution during Coulomb explosion may be considered adiabatic
when observed on the timescales of both the target electronic response and the charge-changing
events, we neglect the change in the individual ion positions relative to the CM frame when
calculating the dynamically screened inter-ionic interactions. Thus, the charge distribution of
the cluster at time t is given by

ρext(r, t) =
n∑

j=1

[Zδ(r − r j − vt) − ρe, j (r − r j − vt)], (1)

where ρe, j (r − r j − vt) is the charge density of the electrons bound on the j th ion. In the BK
theory [15], ρe, j (r) is modelled by a radially symmetric function centred at the ion, as follows:

ρe, j (r) = N j exp(−r/� j )/(4π�2
jr), (2)

where N j is the number of the bound electron and � j is the screening length of the ion.
The inter-ionic interactions within the cluster are described by the self-energy which is,

within the framework of the dielectric response theory, given by [9]

Es = 1

2

n∑
l=1

n∑
j ( �=l)=1

∫
dk

2π2

ρ j (k)ρl(k)

k2ε(k, k · v)
eik·r j l , (3)

where ε(k, ω) is the dielectric function of the medium, ρ j (k) = Z − N j /[1 + (k� j )
2] is

the Fourier transform of the total charge density at the j th ion, ρ j (r) = Zδ(r) − ρe, j (r),
and r j l is the relative position vector between the j th and the lth ions, r jl ≡ rl − r j . In
general, the typical ion sizes � j are much smaller than the inter-ionic distances |r jl | within
the cluster, so that equation (1) may be simplified by invoking the point-charge approximation,
ρ j (k) � ρ j (k = 0) = Z − N j , as follows:

Es ≈ 1
2

n∑
l=1

n∑
j ( �=l)=1

(Z − N j )(Z − Nl )U(r jl), (4)

where

U(r jl) = 1

2π2

∫
dk
k2

1

ε(k, k · v)
eik·r j l , (5)

is the dynamic interaction potential between two protons separated through r jl .
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Figure 1. The dynamic potential U(x, y, z) (in eV), equation (5), in an Al target as a function of
the longitudinal distance z (in nm), with the transversal distances x = y = 0.3 nm, for two ion
speeds, v = 3vB (full curve) and 4vB (broken curve).

It is well known [18] that, for high-velocity ions, the potential U(r jl) has the form of an
axially symmetric stationary wake cone trailing behind the ion, which can be represented by
U(r j l) = UD(r jl) + UW(r jl), where UD(r jl) is a symmetrically screened part of the potential
and UW(r jl) is the asymmetric part of the potential, i.e. the wake potential. In order to facilitate
the numerical computations involving the interaction potential, we use in this work the local-
approximation (LA) dielectric function [18]:

ε(k, ω) = 1 − ω2
p

ω(ω + iγ )
	(kc − k),

where ωp = (4πn0)
1/2 is the plasma frequency of the electron gas with density n0, γ is the

damping factor, kc = ωp/vF is a cut-off wavenumber with vF being the Fermi velocity of the
electron gas and 	(x) denotes the unit step function. Using the LA dielectric function, one
obtains the screened potential in cylindrical coordinates r jl = {χ jl, z jl, φ jl}, as follows:

UD(r jl) = 1

r jl
− 1

λp

∫ ∞

0

J0(κχ jl/λp)

1 + κ2
e−κ |z j l|/λp dκ, (6)

whereas the wake potential is given by

UW(r j l) = 2

λp

[∫ v/vF

0

κ J0(κχ jl/λp)

1 + κ2
dκ

]
sin(z jl/λp) exp(γ z jl/2v)	(−z jl), (7)

where χ jl =
√

x2
jl + y2

jl and λp = v/ωp is the screening length, while J0(x) is the zeroth-order

Bessel function. Figure 1 shows the variation of the interaction potential U(x, y, z) with the
longitudinal distance z, for x = y = 0.3 nm, in an Al target. One observes that the dependence
of the potential on z is rather asymmetric as a consequence of the wake effects in the spatial
pattern of the medium’s response.



Interactions of fast C20 clusters with solids 1235

2.2. Charge states

The total electronic energy of the cluster in the laboratory frame of reference consists of the
kinetic energy of all bound electrons due to the cluster motion, the internal binding energies of
electrons in individual ions and the self-energy taking care of the vicinage effect, namely [14]

ET =
n∑

l=1

Nl
v2

r

2
+

n∑
l=1

Eis(Nl ) +
1

2

n∑
l=1

n∑
j ( �=l)=1

(Z − Nl )(Z − N j )U(r jl), (8)

where vr = 〈|v − ve|〉 is the average speed of the cluster CM relative to the quasi-free electrons
in the target [19] and Eis(N) = −(Z 2 N1/3/0.96)(1−N/(7Z))2 is the internal electronic energy
of an isolated ion with N bound electrons [15]. Following the BK variational approach,
the equilibrium charge states of the partially stripped constituent ions in the cluster can be
determined from the following n coupled equations:

v2
r

2
+ E ′

is(Nl ) −
n∑

j ( �=l)=1

(Z − N j )U(r jl) = 0, (9)

for 1 � l � n, where E ′
is(N) ≡ dEis/dN .

To simplify calculations, we assume in the following that the electron population Nl at
the lth ion is close to the equilibrium number of bound electrons N0 at an isolated isotachic
ion, which is determined by solving the equation v2

r /2 + E ′
is(N0) = 0. Thus, by expanding the

function E ′
is(Nl) in equation (9) about N0 and keeping only the first-order terms, the numbers

Nl of bound electrons at the constituent ions can be determined from the following n linear
equations:

(Nl − N0)E ′′
is(N0) −

n∑
j ( �=l)=1

(Z − N j )U(r jl) = 0, (10)

where E ′′
is(N) ≡ d2 Eis/dN2. We note that the error introduced in this approximation does not

exceed a few per cent for inter-ionic distances greater than the typical equilibrium separations
of atoms in a cluster. Figure 2 shows the velocity dependence of the charge Q0 = Z − N0 of
an isolated carbon ion moving through an aluminium target.

2.3. Coulomb explosion

It is clear from equations (10) that each ion charge Ql = Z − Nl (with 1 � l � n) becomes an
implicit function, Ql = Ql(r jl), of all inter-nuclear relative positions r jl within the cluster and
is therefore expected to affect the Coulomb explosion dynamics. Coulomb explosion patterns
can be obtained by solving the equations of motion where, for the lth ion, we have

drl

dt
= ul, (11)

and

m
dul

dt
= Fsl(v)ez +

n∑
j ( �=l)=1

F jl(r jl, v), (12)

where m is the ion mass, ul is the ion velocity in the laboratory frame, while Fsl(v) is the
self-stopping force on the lth ion, given by

Fsl(v) = − 2

λ2
p

∫ v/vF

0

κρ2
l (κ)

1 + κ2
dκ (13)
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Figure 2. The charge state Q0/Z as a function of the projectile velocity v (in au) for an isolated
carbon ion moving through an Al target.

with ρl(κ) = Z − Nl/[1 + (κ2 + 1)(�l/λp)
2] and F jl(r jl, v) = −Q j Ql∂U(r jl)/∂r jl is the

force exerted on the lth ion by the j th ion (with j �= l). We have indicated explicitly that
the forces in equations (11) and (12) depend on the velocity v of the cluster CM, but not
on the individual ion velocities ul , owing to the adiabaticity of the Coulomb explosion. We
note that the definition of the self-stopping force, equation (13), takes into account the charge
distribution on the lth ion via the function ρl , while the inter-ionic forces F jl are calculated in
the point-charge approximation which is very accurate owing to the fact that �l 	 |r jl|.

Figure 3 shows the dependences on z, with x = y = 0.3 nm, of the longitudinal and
transversal components, Fz and Fy , of the interaction force F(x, y, z) between two protons
moving through an Al target at equal velocities with a speed of 4vB, where vB is the Bohr
speed. We note that the oscillations in the magnitude of the force components shown in
figure 3 are somewhat suppressed in comparison with those evaluated by Heredia-Avalos et al
[12], presumably due to differences in the models of dielectric functions used in the two studies.

The equations of motion (11) and (12) can be solved numerically with the set of initial
positions rl(0) = r j0 characterizing the equilibrium structure of the cluster, and with the initial
velocities ul(0) = v, neglecting the thermal vibrations of the constituent atoms.

2.4. Multiple scattering

Concomitant with the Coulomb explosion, the cluster also undergoes multiple scattering on
target atoms. In the velocity range of interest here, the main effect of multiple scattering is to
change the direction of individual ion velocities, whereas the nuclear energy loss is negligible
in comparison to the electronic energy losses [19]. Therefore, one may expect that multiple
scattering will contribute, in addition to the effect of Coulomb explosion, to a further overall
increase of the inter-ionic separations in the course of penetration through the target.

For the sake of simulating multiple scattering, it is reasonable to assume that the cluster
constituent ions are scattered independently from each other [10], and that each ion undergoes a
random succession of binary collisions with the target atoms. We also assume that the multiple
scattering is not affected by the variation of ion charge states in the course of penetration. We
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Figure 3. Components of the interaction force F between two protons moving through an Al target
with equal velocities of v = 4vB, at a relative position (x, y, z) from each other, with the z axis in
the direction of motion. The dependences on z (in nm) of the longitudinal, Fz (broken curve), and
the transversal, Fy (full curve), force components (in 10−8 N) are shown for x = y = 0.3 nm.

use here a Monte Carlo (MC) method to treat multiple scattering, which is based on the
standard binary collision model [19]. During each time interval �t , used to simulate the
dynamics of Coulomb explosion, we generate a random free path for each ion in the cluster,
λ = −N−1/3 ln R1, where R1 is a uniform random number (0 < R1 < 1) and N is the target
atomic density, and compare it with the distance actually travelled by the cluster, v�t . If
λ < v�t , the ion will be scattered; otherwise, no scattering takes place. The time interval �t
is chosen by using the procedure outlined in [8].

In the binary CM frame for an ion colliding with a target atom, the scattering angle θc is
given by [20]

R2 =
∫ τ

τmin
dσn(τ

′)∫ τmax

τmin
dσn(τ ′)

, (14)

where R2 is another uniform random number (0 < R2 < 1), τ = ε2 sin2(θc/2) is a
dimensionless variable, ε is the reduced energy defined by

ε = aTF M2

Z Z2(m + M2)
E, (15)

with Z2 and M2 being the atomic number and the mass of the target atoms, respectively, and
aTF is the Thomas–Fermi screening radius, aTF = 0.885 34(Z 1/2 + Z 1/2

2 )−2/3. In equation (14),
dσn is the differential nuclear scattering cross-section, expressed as

dσn(τ ) = πa2
TF

dτ

2τ 3/2
f (τ 1/2), (16)

in terms of the universal screening function

f (τ 1/2) = λτ 1/2−α[1 + (2λτ 1−α)β]−1/β, (17)

where λ, α and β are constants: λ = 3.07, α = 0.21 and β = 0.53. The upper and lower
integration limits in equation (14) are defined by τmax = ε2 and

∫ τmax

τmin
dσn(τ

′) = N−2/3. In
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addition, the nuclear energy loss in the collision is given by

�En = 4mM2

(m + M2)2
E sin2

(
θc

2

)
, (18)

where E is the ion kinetic energy.
According to the binary collision theory, the scattering angle in the laboratory frame is

given by

θr = arctan

(
sin θc

cos θc + m/M2

)
. (19)

In the simulation, each constituent ion is followed with reference to a fixed axis, defined by
the incidence direction of the cluster. After a collision takes place, the angle α with respect to
this axis is determined by

cos α = cos α′ cos θr + sin α′ sin θr cos φ, (20)

where α′ is the angle before the collision, φ = 2π R3 is the azimuthal angle and R3 is also
a random number uniformly distributed between 0 and 1. Thus, after the collision, the ion
velocity is given by

u = u′ − �u, (21)

where u′ is the ion velocity before the collision and �u is the change of the velocity, with

�ux = �u sin α cos φ,

�uy = �u sin α sin φ,

�uz = �u cos α,

(22)

where �u = √
2M2�En/m2. If a collision takes place, then the simulation of Coulomb

explosion in the next time interval, based on equations (11) and (12), will start with the
velocity u, updated according to equations (21) and (22).

Thus, equations (10)–(22) constitute a self-consistent procedure to determine the evolution
of ion charge states and the cluster structure due to Coulomb explosion and multiple scattering.

2.5. Energy losses

After determining the ion charge states and the evolution of cluster structure in the course of
Coulomb explosion and multiple scattering, it is possible to deduce the time-dependent energy
dissipation rate per unit path length or the stopping power, Scl(v, t), for the cluster moving at
the speed v. It can be shown that the stopping power can be expressed in terms of the force
components in the direction of cluster motion, according to [21]

Scl(v, t) = S0(v) + Sv(v, t), (23)

where

S0(v) = −
n∑

l=1

Fsl(v) (24)

represents the contribution from the individual self-stopping forces, whereas

Sv(v, t) = −
n∑

l=1

n∑
j ( �=l)=1

(F jl)z(r jl, v) (25)

is the so-called vicinage stopping power which describes interferences in the energy losses due
to the spatial correlation among the constituent ions.
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Using the expression for the dynamic interaction potential, equation (7), it is
straightforward to show that

Sv(v, t) = 2

λ2
p

n∑
l=1

n∑
j ( �=l)=1

Q j Ql G(z jl)

∫ v/vF

0

κ J0(κχ jl/λp)

1 + κ2
dκ, (26)

with

G(z jl) =
[

cos

(
z jl

λp

)
+

γ

2ωp
sin

(
z jl

λp

)]
exp

(
γ z jl

2v

)
	(−z jl).

Here, it should be stressed that the time dependence of the stopping power comes from the
time-dependent inter-ionic distances {χ jl(t), z jl(t)}, as well as from the ion charges Ql(t),
which also evolve with the cluster structure, as determined by equations (10)–(22).

3. Results for a C20 cluster

It is known [22, 23] that C20 is the smallest of all carbon fullerenes. In this paper, we choose
C20 as a model cluster because, in Coulomb explosions, its equilibrium cage-like structure
will be highly susceptible to any asymmetry in the inter-ionic interactions, as well as to the
randomness of multiple scattering. Figure 4 shows several snapshots of the ion positions,
obtained in simulations both (a) without and (b) with the effects of multiple scattering at times
t = 0, 6, 12, 18 and 24 fs, for C20 clusters moving at the speed v = 4vB through an Al target.
It is interesting to notice that the C20 cluster structure evolves into a basket-like, or vase-like,
shape, which becomes increasingly elongated in the direction of motion with increasing time as
a direct consequence of the wake-potential asymmetry. Owing to the specifically chosen initial
orientation of C20, the patterns in figures 4(a) and (b) consist of four pentagons with different
sizes, placed in the planes perpendicular to the direction of motion. Moreover, one can observe
by comparing figure 4(a) with (b) that the longitudinal elongation of the cluster structure is
somewhat reduced and the positions of the ions in each pentagon become slightly asymmetric
in the presence of multiple scattering. It appears that the effect of multiple scattering is weak
relative to the effect of Coulomb explosion. For example, after a penetration time of 24 fs, the
longitudinal size of the cluster is about 4.5 nm when multiple scattering is taken into account,
while this size is about 5 nm in the absence of multiple scattering.

In order to study the role played by the non-homogeneity of ion-charge distribution
throughout the cluster, we show in figure 5 the results analogous to those in figure 4(b),
but with all ion charges taken to be frozen during the cluster penetration and taken equal to
the charge Q0 of an isolated C ion moving at the same speed of v = 4vB. By comparison
with figure 4(b), one finds that the cluster shape is somewhat broader in figure 5, indicating
that the non-homogeneous charge distribution tends to hinder the cluster expansion in the
lateral directions, but the effect does not appear to be too strong. In order to further reveal the
asymmetry of the spatial distribution of ion charges due to the vicinage effect in the presence of
wake interactions, we notice that, owing to both the axial symmetry of the interaction potential
and the chosen orientation of the cluster, the groups of five ions in each of the four pentagons
from figures 4 and 5 will have about the same charges. We show in figures 6(a) and (b) the time
dependence of the ion charge ratio Q/Q0 for C20 clusters moving through an Al target at the
speeds v = 3vB and 4vB, respectively. In figures 6(a) and (b), the four curves labelled by A,
B, C and D display the charge states of five ions in each of the four pentagons from figure 4(b),
such that pentagon A is leading, whereas the curve labelled by E displays the average charge
taken over all constituents in the cluster. Clearly, the vicinage effect on ion charges is quite
pronounced in the early stages of Coulomb explosion, whereas the wake-potential asymmetry
gives rise to a rather non-homogeneousdistribution of ion charges. In particular, the ions in the
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Figure 4. 3D Coulomb explosion patterns, obtained (a) without and (b) with multiple scattering
(MS), for C20 moving through an Al target at the speed v = 4vB in the indicated direction.
Snapshots of ion positions are given in a frame of reference attached to the cluster for several
penetration times: t = 0, 6, 12, 18 and 24 fs.

leading pentagon A have a reduced charge state which increases towards Q0 after prolonged
times, whereas the initial charge reduction is less pronounced in pentagons B and C, which
also pass through regions of increased charges, compared to Q0, in the intermediate stages of
Coulomb explosion. Interestingly, the ion charge in the trailing pentagon D is initially greater
than Q0 and, after passing through a maximum value, settles at Q0 after long times. Finally,
curves E in figure 6 show that the average charge is smaller than Q0 at the initial stages of
penetration, in accordance with the observations of Brunelle et al [16].

In order to elucidate the magnitude of the interferences in cluster energy losses due to
the vicinage effect, we define the stopping ratio, R(v, t) = 1 + Sv(v, t)/S0(v), and display its
dependence on the penetration time in figures 7(a) and (b) for C20 clusters moving at the speeds
v0 = 3vB and 4vB, respectively, through an Al target. In particular, we compare the results
obtained in simulations with and without the effects of multiple scattering. It is seen that the
energy losses are significantly enhanced due to constructive interferences at the early stages
of Coulomb explosion and that R drops to a value close to 1 after some 5–10 fs, indicating a
weakening of the vicinage effect due to the dispersion of the cluster. As expected, the effect of
multiple scattering is to accelerate the reduction of the vicinage effect on energy losses, when
compared to the case where only Coulomb explosion controls the dispersion of the cluster.
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Figure 5. 3D Coulomb explosion patterns, including multiple scattering effects, for C20 moving
through an Al target at the speed v = 4vB in the indicated direction. Snapshots of ion positions
are given in a frame of reference attached to the cluster, for several penetration times: t = 0, 6, 12,
18 and 24 fs. Here, the ion charges are taken to be frozen at the value Q0 of an isolated isotachic
carbon ion.

4. Summary

We have presented a first version of a theoretical model for cluster penetration through a solid
target by combining MD simulation of Coulomb explosion and MC simulation of the multiple
scattering, which determines, in a self-consistent manner, all ion charges in the cluster for
an instantaneous configuration of ions at any given moment of the penetration, and feeds
back those charges into the equations of motion for Coulomb explosion. This dual self-
consistency, involving the electron binding at the constituent ions as well as the dynamics of
nuclear coordinates, is a unique feature of Coulomb explosions in matter, where the medium
provides a dynamical and spatially anisotropic response to the group of spatially correlated ions.
Namely, the dynamically screened potential in the medium is responsible for the ion motion in
Coulomb explosion, the mutual influence of the constituent ions on each ion’s ability to bind
electrons, as well as for the deposition of energy into collective and single-particle excitations
of the target electrons.

It is found that the wake-like asymmetry in the dynamic screening gives rise to rather strong
effects in both Coulomb explosion and the ion-charge distribution. Whereas the magnitude of
the vicinage effect on ion charges is quite strong in the initial stages of Coulomb explosion,
when the ions are still close to each other, the wake asymmetry gives rise to a surprisingly
non-homogeneous spread of ion charges throughout the cluster, such that the leading ions
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Figure 6. Charge state ratio Q/Q0 for ions in C20 clusters moving through an Al target at two
speeds: (a) v = 3vB and (b) v = 4vB. The curves labelled by A, B, C and D display the charges of
five ions in each of the four pentagons seen in figures 4 and 5, with pentagon A leading, whereas
the curve labelled E displays the average charge taken over all constituents in the cluster.

appear with reduced charges, and the trailing ions with increased charges, as compared to the
charge state of an isolated isotachic ion. The structure of the cluster appears to be generally
growing in size in the course of penetration, while exhibiting pronounced elongation in the
direction of motion of the cluster due to Coulomb explosion being driven by the inter-ionic
potential with the wake asymmetry. On the other hand, the effects of multiple scattering
are found to reduce this elongation and bring some asymmetry into the evolving shape of
the cluster. Furthermore, the quantitative effect of the non-homogeneous distribution of ion
charges is found to give rise to somewhat narrower cluster shapes, when compared to the
penetration of the same cluster under the same conditions, but with the ion charges being
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Figure 7. The stopping ratio R = 1 + Sv/S0 versus the penetration time for C20 clusters moving
through an Al target at two speeds: (a) v = 3vB and (b) 4vB, obtained without (full curves) and
with (broken curves) multiple scattering.

frozen at the value for an isolated isotachic ion. Finally, the time dependence of the cluster
stopping power is found to exhibit rather strong constructive interferences in the early stages
of penetration, when the ions are still closely spaced, which diminish after sufficiently long
time when the constituent ions fly apart. The variation and the non-homogeneous distribution
of ion charge states are found to have relatively weak effects on the cluster energy losses, at
least for the set of parameters used in the present simulations. On the other hand, multiple
scattering clearly gives rise to a faster dispersion of the cluster, causing a quicker diminishing
of the vicinage effect on the energy loss when compared to the simulation where multiple
scattering is omitted.

The local-approximation dielectric function, used in the present work, has a rather limited
range of applicability to sufficiently fast clusters, where long-ranged interactions and collective
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electron excitations dominate the interactions with the target. A more elaborate dielectric
function, including the dispersion and the local-field effects, will be used in future work,
allowing a more appropriate description of interactions of slower clusters with solids.
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[17] Li H-W, Wang Y-N and Mišković Z L 2002 Nucl. Instrum. Methods B 193 204
[18] Echenique P M, Ritchie R H and Brandt W 1979 Phys. Rev. B 20 2567
[19] Ziegler J F, Biersack J P and Littmark U 1985 The Stopping and Range of Ions in Solids vol 1 (New York:

Pergamon)
[20] Adesida I and Karapiperis L 1982 Radiat. Eff. 61 223
[21] Arista N 2000 Nucl. Instrum. Methods Phys. Res. B 164/165 108
[22] Prinzbach H et al 2000 Nature 409 40
[23] Ke X Z, Zhu Z Y, Zhang F S, Wang F and Wang Z X 1999 Chem. Phys. Lett. 313 40


